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a b s t r a c t

As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering
phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study,
a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-
spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped
dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary
condition (ABC) is used to truncate the computational domain. It is found that the PSTD
method is generally more accurate than the FDTD in calculation of the single-scattering
properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large
particles, it can lower the memory requirement in the calculation. However, the Fourier
transformations in the PSTD need significantly more CPU time than simple subtractions in the
FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus
using the PSTD could not significantly reduce the CPU time required in the numerical
modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-
wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident
wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers
usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD
light-scattering models can be used to calculate single-scattering properties of arbitrarily
shaped aerosol particles over broad size and wavelength ranges.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Remote-sensing methods to determine aerosol properties,
like those developed for the NASA Glory mission [1] require
accurate modeling of the polarized solar radiation transferred
through the atmosphere composing aerosols. As fundamental
parameters for polarized-radiative-transfer calculations,
single-scattering phase-matrix elements of irregularly shaped
All rights reserved.

ley Research Center,
SA. Tel.: +1 757 864
aerosol particles must be accurately modeled. However, the
size parameters of aerosols under the broad solar spectrum
generally reside in the range where neither Rayleigh or
Rayleigh–Gans, nor geometric optics method can be applied
to calculate their light scattering properties. Although for
these size parameters exact algorithms such as those based
on Mie theory [2] and the T-matrix method [3] are very
efficient at calculating light scattering from specific, ideal
morphologies, like spheres, spheroids, and cylinders, these
methods generally have limited applicability to the real-
world irregularly shaped aerosol particles. Thus, with the
advance of computing resources, numerical light-scattering
solutions such as the discrete dipole approximation (DDA)
[4–8], the finite-difference time domain (FDTD) technique
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[9–16] and the pseudo-spectral time-domain (PSTD) method
[17–23] are used more and more frequently in light-
scattering studies.

The FDTD technique is formulated by replacing temporal
and spatial derivatives in Maxwell's equations with their
finite-difference equivalences. To ensure numerical stability
and accurate calculation, the finite-difference spatial cell sizes
are generally set to be λd/20 to λd/10, where λd is the
wavelength inside the particle. Theoretically, the FDTD is an
accurate method for any particle size parameters. However,
for large particles, the FDTD's requirement for a small spatial
cell size results in formidably large computational memory
and CPU time requirements. Therefore, for large electromag-
netic structure scattering problems, the PSTD algorithm
which could be numerically stable even with a spatial cell
size as large as λd/2 have significant advantages [17], at least
in computational memory requirements.

In this study, we develop a scattered-field FDTD light
scattering model and a scattered-field PSTD light-scattering
model with the convolutional perfectly matched layer
(CPML) [15,24] absorbing boundary condition (ABC) to
truncate the computational domain, as a supplementary
development to the polarized-radiative-transfer model for
applications to irregular aerosol particles. Because the
scattered-field FDTD/PSTD equations include incident wave
source terms, the FDTD/PSTD model allows for the inclusion
of an arbitrarily incident wave source, including a plane
parallel wave or a Gaussian beam like those emitted by lasers
that are often used in laboratory particle characterizations,
etc. In Section 2, the FDTD and PSTD light scattering models
with the convolutional perfectly matched layer (CPML)
absorbing boundary conditions (ABC) are introduced. In
Section 3, sample numerical results are shown. Summary
and conclusions are given in Section 4.

2. Method

2.1. Scattered-field finite-difference time domain method

Following our previous study for a light beam's inter-
action with an arbitrary dielectric surface [16], we applied
the scattered-field FDTD technique to calculate light scat-
tering by particles of arbitrary shapes in free space. The
scattered-field FDTD method with wave source terms in its
update equations allows more flexibility in the specifica-
tion of the form of the incident fields, which can be either
plane parallel wave or a Gaussian beam, etc. [16]. Follow-
ing [16], in a Cartesian grid system the x components of
the scattered magnetic and electric fields in the scattered-
field FDTD algorithm, e.g., are in the forms

Hs;nþ1=2
x ði; jþ 1=2; kþ 1=2Þ ¼Hs;n�1=2

x ði; jþ 1=2; kþ 1=2Þ

þ Δt
μ0Δs

� Es;ny ði; jþ 1=2; kþ 1Þ�Es;ny ði; jþ 1=2; kÞ
h

þEs;nz ði; j; kþ 1=2Þ�Es;nz ði; jþ 1; kþ 1=2Þ�; ð1aÞ

Es;nþ1
x ðiþ 1=2; j; kÞ ¼ 2ε�sΔt

2εþ sΔt

� �
Es;nx ðiþ 1=2; j; kÞ

þ 2Δt=Δs
2εþ sΔt

� �
Hs;nþ1=2

y ðiþ 1=2; j; k�1=2Þ
h

�Hs;nþ1=2
y ðiþ 1=2; j; kþ 1=2Þ þ Hs;nþ1=2

z ðiþ 1=2; jþ 1=2; kÞ

�Hs;nþ1=2
z ðiþ 1=2; j�1=2; kÞ

i
� sΔt

2εþ sΔt

� �
Ei;nþ1
x ðiþ 1=2; j; kÞ þ Ei;nx ðiþ 1=2; j; kÞ

h i

� 2ε�2ε0
2εþ sΔt

� �
Ei;nþ1
x ðiþ 1=2; j; kÞ�Ei;nx ðiþ 1=2; j; kÞ

h i
; ð1bÞ

where μ0 and ε0 are the permeability and permittivity of
free space, respectively; ε and s are the permittivity and
conductivity of the medium including the scattering par-
ticle, respectively; Δs and Δt denote the spatial cell size
and time increment, respectively. To guarantee the numer-
ical stability of the FDTD scheme, we use Δt¼Δs/(2c),
where c is the light speed in free space. The indices (i, j, k)
denote the center positions of the spatial cells in the FDTD
grid. The time step is denoted by integer n. The positions of
the magnetic and electric field components on a spatial
cell are identical to those illustrated in Sun et al. [13]. In
this study, the incidence field Ei is set as a continuous wave
and analytically given at any grid points where there is
dielectric material.

The convolutional perfectly matched layer (CPML) ABC
developed by Roden and Gedney [24] is used to truncate
the computational domain in the FDTD/PSTD calculations.
The CPML is based on the stretched-coordinate form of the
perfectly matched layer (PML) [25] and is more accurate
than the uniaxial perfectly matched layer (UPML) ABC
[26]. The CPML ABC is more efficient and more suitable for
truncation of computational domains with generalized
materials. For both scattered/total field formulation and
purely scattered-field formulation of the FDTD/PSTD, the
CPML ABC can be directly applied to truncate the calcu-
lated fields even where the incident-wave source exists.
For example, to match a CPML along a boundary to a lossy
isotropic half-space characterized by permittivity ε and
conductivity s in which the fields update equations are
given as Eqs. (1a) and (1b), the update equations of Hx and
Ex in the CPML can be written in the form [15]:

Hs;nþ1=2
x ði; jþ 1=2; kþ 1=2Þ ¼Hs;n�1=2

x ði; jþ 1=2; kþ 1=2Þ
�Δt

μ0
Es;nz ði; jþ 1; kþ 1=2Þ�Es;nz ði; j; kþ 1=2Þ� �

= κyðjþ 1=2ÞΔs� ��

� Es;ny ði; jþ 1=2; kþ 1Þ�Es;ny ði; jþ 1=2; kÞ
h i

= κzðkþ 1=2ÞΔs� �o

�Δt
μ0

Hs;n
x;yði; jþ 1=2; kþ 1=2Þ�Hs;n

x;zði; jþ 1=2; kþ 1=2Þ
h i

;

ð2Þ
where

Hs;n
x;yði; jþ 1=2; kþ 1=2Þ ¼ byðjþ 1=2ÞHs;n�1

x;y ði; jþ 1=2; k

þ1=2Þ þ cyðjþ 1=2Þ½Es;nz ði; jþ 1; kþ 1=2Þ
�Es;nz ði; j; kþ 1=2Þ�=Δs; ð3aÞ

Hs;n
x;zði; jþ 1=2; kþ 1=2Þ ¼ bzðkþ 1=2ÞHs;n�1

x;z ði; jþ 1=2; kþ 1=2Þ
þczðkþ 1=2Þ½Es;ny ði; jþ 1=2; kþ 1Þ
�Es;ny ði; jþ 1=2; kÞ�=Δs: ð3bÞ

Es;nþ1
x ðiþ 1=2; j; kÞ ¼ 2ε�sΔt

2εþ sΔt

� �
Es;nx ðiþ 1=2; j; kÞ
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þ 2Δt
2εþ sΔt

� �
Hs;nþ1=2

z ðiþ 1=2; jþ 1=2; kÞ
hn

�Hs;nþ1=2
z ðiþ 1=2; j�1=2; kÞ

i
= κyðjÞΔs
� �

� Hs;nþ1=2
y ðiþ 1=2; j; kþ 1=2Þ

h
�Hs;nþ1=2

y ðiþ 1=2; j; k�1=2Þ
i
= κzðkÞΔs

ioh

þ 2Δt
2εþ sΔt

� �
Es;nþ1=2
x;y ðiþ 1=2; j; kÞ

h
�Es;nþ1=2

x;z ðiþ 1=2; j; kÞ�; ð4Þ

where

Es;nþ1=2
x;y ðiþ 1=2; j; kÞ ¼ byðjÞEs;n�1=2

x;y ðiþ 1=2; j; kÞ
þcyðjÞ½Hs;n�1=2

z ðiþ 1=2; jþ 1=2; kÞ
�Hs;n�1=2

z ðiþ 1=2; j�1=2; kÞ�=Δs; ð5aÞ

Es;nþ1=2
x;z ðiþ 1=2; j; kÞ ¼ bzðkÞEs;n�1=2

x;z ðiþ 1=2; j; kÞ
þczðkÞ½Hs;n�1=2

y ðiþ 1=2; j; kþ 1=2Þ
�Hs;n�1=2

y ðiþ 1=2; j; k�1=2Þ�=Δs: ð5bÞ

The by, bz, cy, cz in these equations are given in the form
(u¼x, y, or z):
Fig. 1. Nonzero light-scattering phase matrix elements from the Lorenz–Mie the
of wavenumbers (olive) for a spherical aerosol particle with a size parameter of x
the spatial cell size is set as 1/8 incident wavelength. (For interpretation of the
version of this article.)
bu ¼ e�Δtððsu=εoκuÞþðau=ε0ÞÞ; ð6aÞ

cu ¼
ðbu�1Þsu

suκu þ κ2uau
ð6bÞ

The CPML properties (ax,κx,sx), (ay,κy,sy), and (az,κz,sz) are
scaled tensor parameters independent of the medium
permittivity ε and conductivity s, and are assigned to the
FDTD grids in the CPML in the form as [15]

ax ¼ ðx=dÞmax;max; ð7aÞ

κxðxÞ ¼ 1þ ðx=dÞmðκx;max�1Þ; ð7bÞ

sxðxÞ ¼ ðx=dÞmsx;max: ð7cÞ

where x is the depth in the CPML and d is the CPML
thickness in this direction. The parameters ax,max, κx,max

and sx,max denote the maximum ax, κx and sx at the
outmost layer of the CPML; e.g., considering an x-directed
plane wave impinging at angle θ upon a PEC-backed CPML
with polynomial grading material properties, the reflec-
tion factor can be derived as [25]
ory (black), the FDTD (red), the PSTD (blue), and the PSTD with truncation
¼6 and a refractive index of m¼1.53. In the PSTD and FDTD calculations,

references to color in this figure legend, the reader is referred to the web



W. Sun et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 166–174 169
RðθÞ ¼ exp �2 cos θ
ε0c

Z d

0
sðxÞdx

" #
¼ exp �2sx;maxd cos θ

ε0cðmþ 1Þ

� �
:

ð8Þ

Therefore, with a reflection factor R(0) for normal inci-
dence, sx,max can be defined as

sx;max ¼�ðmþ 1Þε0cln ½Rð0Þ�
2d

: ð9Þ

As an accurate approach, R(0) can range from 10�12 to
10�5, κx,max and ax,max can be chosen with accuracy tests,
and the numerical errors are not very sensitive to them. In
this study, we choose R(0)¼10�8, κx,max¼1.1, and ax,
max¼0.1.

Using the equations reported in this section, a
scattered-field formulation of the FDTD that includes the
source term can be implemented inside the CPML. The
scattered-field CPML FDTD has great flexibility in simulat-
ing electromagnetic wave scattering by dielectric particles
and surfaces.

The single-scattering properties of particles are calcu-
lated with the volume integration of the total electric field
in the frequency domain [14]. The total electric field is the
superposition of the incident and scattered fields:
E¼Ei+Es. The FDTD simulation is run for 20Nd time steps,
where Nd denotes the spatial cell number in the largest
dimension of the computational domain. The frequency
Fig. 2. Same as in Fig. 1, but in the PSTD and FDTD calculatio
domain correspondent of the total field is obtained from
the discrete Fourier transform (DFT) of the time series of
the field.

2.2. Scattered-field pseudo-spectral time domain method

The spatial discretization in the FDTD method causes
dispersion errors, which limit the spatial cell size used in
numerical calculations to not larger than 1/20 to 1/10 of
the wavelength [13]. Therefore, the FDTD method requires
a large number of spatial cells to calculate the light
scattering, even by particles of intermediate sizes. The
PSTD algorithm was recently developed to avoid this
problem, which ideally needs only two spatial cells per
wavelength to discretize the computational domain and is
free of spatial dispersion errors [17]. The coarse discretiza-
tion of the PSTD algorithm enables this method to be an
optimal solution for large particles. The errors introduced
in the PSTD algorithm are claimed to be only the temporal
discretization error [18]. For a 3-diemensional (3D) pro-
blem, the PSTD requires a stability criterion as [18]

Δt≤
2Δsffiffiffi
3

p
πc

; ð10Þ

which is a stability criterion with smaller temporal dis-
cretization than that of the FDTD. In this study, we set
Δt¼Δs/(3c) for the PSTD calculations.
ns, the spatial cell size is set as 1/16 incident wavelength.
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The essence of the PSTD is to use Fourier integrals to
obtain the derivative of a field f(u)

∂f ðuÞ
∂u

¼ ∂
∂u

Z 1

�1
F½f ðuÞ�e�ikudk


 �

¼�
Z 1

�1
ikF½f ðuÞ�e�ikudk¼�F�1 ikF½f ðuÞ�� �

; ð11Þ

where u denotes a spatial coordinate (x, y, or z); F and F�1

denote the forward and inverse Fourier transforms; k
denotes the wavenumber variable in the Fourier trans-
form; and i¼

ffiffiffiffiffiffiffi
�1

p
. This is a well-known formula in

mathematics with a long history [27,28].
Based on the scattered-field CPML FDTD method intro-

duced in Section 2.1, we can obtain the scattered-field
CPML PSTD algorithm by replacing all the finite-difference
approximations of spatial derivatives of fields in the FDTD
update equations, including those in the CPML, with the
precise spatial derivatives from the Fourier transforms in
Eq. (11). Since all the field components are calculated at
spatial cell centers in the PSTD algorithm, the spatial
position shifts of “+1”, “+1/2”, and “�1/2” in all of the
FDTD update equations, including those in the CPML in
Section 2.1, are removed for the PSTD field update equa-
tions. No other modifications are necessary in this FDTD-
to-PSTD modification. The PSTD is run for 30Nd time steps
in this study.
Fig. 3. Same as in Fig. 1, but in the PSTD and FDTD calculation
Note here that the forward and inverse Fourier trans-
forms are performed using the fast Fourier transform (FFT)
and the inverse fast Fourier transform (IFFT) codes given in
Numerical Recipes [29]. The FFT and IFFT are performed
spatially for each time step, along each direction of x, y,
and z, using the field throughout the whole computational
domain, including the CPML, to obtain the spatial deriva-
tives of both electric and magnetic field components at
each grid point, prior to the field update calculations.

Our practice shows that the PSTD does avoid the spatial
dispersion errors that can cause the FDTD method to
become numerically unstable when too few spatial cells
are used. However, the PSTD method does have significant
numerical errors from different sources, in addition to the
errors caused by temporal discretizations as claimed by Liu
et al. [18]. The most pronounced error source is the so-
called Gibbs phenomenon [18], which involves both the
fact that Fourier sums overshoot at a discontinuity, and
that this overshoot does not disappear as the frequency
increases. For electromagnetic wave propagation in homo-
geneous media, the PSTD works ideally because there is no
Gibbs effect. But for light-scattering problems, a particular
medium-and-field-discontinuity case, the Gibbs effect
causes significant errors. Since the Fourier transforms in
the PSTD algorithm are conducted throughout the whole
computational domain at each time step, and the field
s, the spatial cell size is set as 1/24 incident wavelength.
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derivatives at each grid point are actually derived from
fields throughout the whole computational domain,
including those in the CPML, the Fourier transformation
errors (Gibbs effect) at any field discontinuity are trans-
mitted everywhere and to every time step. These errors
contaminate the whole computational domain and even
cause numerical instability of the PSTD method [23]. Liu
et al. [18] state that using purely scattered fields in the
calculation could decrease the Gibbs effect, and this is also
the reason why we use scattered-field FDTD and PSTD
algorithm in this study.

3. Results

Light scattering is a typical electromagnetic problem
with discontinuities. Though the PSTD method is claimed
to be a rigorous algorithm without numerical dispersion
errors, its Fourier transformation errors (Gibbs effect) due
to these discontinuities and finite sums of spectral terms
are actually very significant. If there is no special treatment
to control these errors, the original PSTD is generally
numerically unstable when particle size parameter is large
[23]. Using volume-averaged dielectric constant [23] could
decrease the discontinuities of the fields, but could also
alter the scattering physics at the particle edge. Truncation
Fig. 4. Nonzero light-scattering phase matrix elements from the Lorenz–Mie the
of wavenumbers (olive) for a spherical aerosol particle with a size parameter of x
the spatial cell size is set as 1/8 incident wavelength. (For interpretation of the
version of this article.)
of the wavenumbers in the inverse Fourier transformation
to eliminate high wavenumber terms [23] can stabilize the
PSTD algorithm, but can also cause errors in the numerical
results due to the unphysical manipulation of the scattered
fields. In this study, we will not average the dielectric
constant in both the FDTD and PSTD calculations. To see
the errors caused by the wavenumber truncation, we will
compare the results from the original PSTD and the PSTD
with truncation of the wavenumbers in the inverse Fourier
transformation. We choose to truncate 10% of the wave-
numbers at the high end in the inverse Fourier transfor-
mation for the comparisons in this study.

Fig. 1 shows the nonzero light-scattering phase matrix
elements from the Lorenz–Mie theory (black), the FDTD
(red), the PSTD (blue), and the PSTD with truncation of
wavenumbers (olive) for a spherical aerosol particle with a
size parameter of x¼6 and a refractive index ofm¼1.53 for
dust aerosols. The reason why we choose non-absorbing
particles with large refractive index is that light scattering
by these type of particles is the most difficult to be
accurately approached by numerical models like the
DDA/FDTD/PSTD. If a numerical model is accurate on these
particles, it can perform well on aerosols under a wide
incident light spectrum. In the PSTD and FDTD calculations
in Fig. 1, the spatial cell size is set as 1/8 incident
ory (black), the FDTD (red), the PSTD (blue), and the PSTD with truncation
¼12 and a refractive index of m¼1.53. In the PSTD and FDTD calculations,
references to color in this figure legend, the reader is referred to the web
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wavelength. We can see that due to the big spatial cell size
of 1/8 incident wavelength, the FDTD results in significant
numerical dispersion errors in all of the light scattering
phase matrix elements. However, the PSTD results gener-
ally follow those of the Lorenz–Mie curves, though large
errors do exist at many scattering angles. When smaller
spatial cell sizes of 1/16 and 1/24 incident wavelength are
used, as shown in Figs. 2 and 3 respectively, the FDTD
dispersion errors are greatly reduced. However, the PSTD
results are affected by the spatial cell size not as signifi-
cantly as in the FDTD, as shown in Figs. 2 and 3. This is
because the errors of the PSTD are majorly due to Gibbs
phenomenon and in nature different from the numerical
dispersion errors of the FDTD algorithm. In principle,
numerical dispersion errors can be totally removed by
infinitely decreasing the spatial cell size, but the Gibbs
effect errors of the PSTD cannot. Also, from Figs. 1–3 we
can see that truncation of wavenumbers in the inverse
Fourier transformation in the PSTD can cause significant
errors in the single-scattering phase matrix elements.

For a larger spherical particle with a size parameter of
12 and a refractive index of 1.53, Fig. 4 shows that when
the spatial cell size is set as 1/8 incident wavelength, the
PSTD results for this larger particle generally follow those
from the Lorenz–Mie theory, though significant errors
exist at most scattering angles; whereas, those from the
FDTD are quite different from the exact results due to the
Fig. 5. Same as in Fig. 4, but in the PSTD and FDTD calculation
numerical dispersion error of the FDTD method. When
smaller spatial cell sizes of 1/16 and 1/24 incident wave-
length are used, as shown in Figs. 5 and 6 respectively, the
FDTD errors are greatly reduced, but the PSTD errors are
still not significantly changed. For the PSTD, the truncation
of wavenumbers cause more significant errors when the
spatial cell size is bigger.

The light scattering efficiencies (Qs) and asymmetry
factors (g) for the cases in Figs. 1–3 and 4–6 are listed in
Tables 1 and 2, respectively. We can see that scattering
efficiency and the asymmetry parameter from the PSTD
are significantly more accurate than those from the FDTD.
However, truncation of the wavenumbers in the PSTD can
cause large errors in the scattering efficiency and asym-
metry parameter.

In summary, the scattered-field FDTD method with the
CPML ABC still needs spatial cell sizes of �λd/20 to
approach a good accuracy in calculated single-scattering
properties. But a spatial cell size of �λd/10 in the PSTD can
result in accurate results. So the PSTD is more suitable for
calculation of light scattering by larger particles. However,
the PSTD has significant Gibbs effect errors which cannot
be reduced even by significantly decreasing the spatial cell
size, especially for large particles. Also, though the PSTD
requires much lower spatial resolution (Δs≈λd/10) than
the FDTD (Δs≈λd/20) for an accurate calculation of the
single-scattering properties of particles, its two Fourier
s, the spatial cell size is set as 1/16 incident wavelength.



Fig. 6. Same as in Fig. 4, but in the PSTD and FDTD calculations, the spatial cell size is set as 1/24 incident wavelength.

Table 1
Light scattering efficiencies Qs and asymmetry factors g of a spherical
particle with a size parameter x¼6 and a refractive index m¼1.53 for the
cases in Figs. 1–3. Also shown are the relative errors of the FDTD, PSTD,
and the PSTD with wavenumber truncation (PSTDT).

Qs g

Lorenz–Mie 2.456 0.581
FDTD (Δ¼λ/8) 1.801 (�26.6%) 0.407 (�29.9%)
FDTD (Δ¼λ/16) 2.249 (�8.4%) 0.543 (�7.0%)
FDTD (Δ¼λ/24) 2.374 (�3.3%) 0.561 (�3.5%)
PSTD (Δ¼λ/8) 2.359 (�3.9%) 0.590 (1.5%)
PSTDT (Δ¼λ/8) 3.213 (30.8%) 0.613 (5.5%)
PSTD (Δ¼λ/16) 2.554 (4.0%) 0.594 (2.2%)
PSTDT (Δ¼λ/16) 2.243 (�8.7%) 0.594 (2.2%)
PSTD (Δ¼λ/24) 2.502 (1.9%) 0.587 (1.0%)
PSTDT (Δ¼λ/24) 2.409 (�1.9%) 0.585 (0.7%)

Table 2
Same as in Table 1, but for a spherical particle with a size parameter
x¼12.

Qs g

Lorenz–Mie 2.549 0.651
FDTD (Δ¼λ/8) 1.637 (�35.7%) 0.643 (�1.2%)
FDTD (Δ¼λ/16) 2.209 (�13.3%) 0.695 (6.7%)
FDTD (Δ¼λ/24) 2.483 (�2.5%) 0.656 (0.7%)
PSTD (Δ¼λ/8) 2.193 (�13.9%) 0.654 (0.5%)
PSTDT (Δ¼λ/8) 2.695 (5.7%) 0.715 (9.8%)
PSTD (Δ¼λ/16) 2.585 (1.4%) 0.673 (3.4%)
PSTDT (Δ¼λ/16) 2.209 (�13.3%) 0.636 (�2.3%)
PSTD (Δ¼λ/24) 2.580 (1.2%) 0.674 (3.5%)
PSTDT (Δ¼λ/24) 2.574 (1.0%) 0.700 (7.5%)
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transformations make its CPU time requirement still
comparable to a FDTD calculation with finer spatial cells.
For example, our test shows that for a computational
domain of 128�128�128 spatial cells, the PSTD algo-
rithm needs about 10 times CPU time that the FDTD
requires for the simulation. This means that even if the
PSTD simulation is done on a rougher spatial grid like
64�64�64 spatial cells, the CPU time needed in the PSTD
calculation is still larger than that required by the FDTD for
the 128�128�128 spatial cells. Note here that the FDTD
and PSTD were systematically compared with the DDA for
light scattering simulations, although the FDTD and PSTD
were not compared directly in [30,31].

4. Conclusions

In this study, a scattered-field finite-difference time
domain (FDTD) and a scattered-field pseudo-spectral time
domain (PSTD) model are developed for light scattering by
arbitrarily shaped dielectric aerosols. The convolutional
perfectly matched layer (CPML) absorbing boundary con-
dition (ABC) is used to truncate the computational domain.
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Because the scattered-field FDTD/PSTD equations include
incident wave source terms, the FDTD/PSTD model allows
for the inclusion of an arbitrarily incident wave source,
including a plane parallel wave or a Gaussian beam like
those emitted by lasers usually used in laboratory particle
characterizations, etc. Numerical results show that single-
scattering properties of spherical particles from the
scattered-field CPML FDTD are close to those from
Lorenz–Mie theory only when small spatial cell sizes are
used. However, the PSTD can produce more accurate
results when spatial cell size is large. As a trade-off for
numerical stability, truncation of wavenumbers in the
inverse Fourier transformation in the PSTD can cause
significant errors in the calculated single-scattering prop-
erties of aerosols, especially in scattering efficiencies. Same
as the FDTD, the PSTD has no preference to a particle
shape, though different particle shapes can numerically
cause some difference in results due to the imperfect ABC
and Gibbs effect. Examples of application of the PSTD to
nonspherical particles can be found in [18].

The PSTD can be a good algorithm for coarse-mode
aerosols that requires much less computing memory, though
two Fourier transformations and a power of 2 elements
required by the fast Fourier transform make its CPU time
requirement still comparable to a FDTD calculation which
requires fine spatial cubic cells. Therefore, depending on the
computer's available memory and CPU, the FDTD method
could be applied for small aerosol particles, and for larger
particles the PSTD method can be used. Employing the
advantages of both methods, single-scattering properties of
arbitrarily shaped aerosol particles can be calculated over
broad size and wavelength spectra.
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